Cavity-Containing Cyclophosphazanes: $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mu-\mathrm{PhP})(\mathrm{PPh})\right]_{2}$ and $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{N}_{2}(\mu-\mathrm{PhP})(\mathrm{PhPS})\right]_{2}$

Joseph M. Barendt, Elizabeth G. Bent, R. Curtis Haltiwanger, and Arlan D. Norman*

Department of Chemistry and Biochemistry University of Colorado Boulder, Colorado 80309-0215 Received March 17, 1989

Molecules containing donor atom functionality within a cavity, cleft, or otherwise sterically restricted region are of considerable interest ${ }^{1-6}$ and such molecules containing phosphorus(III) donor sites are rare. We now report the first example of a novel class of phosph(III)azane donor cavity molecules $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mu-\mathrm{PhP})\right.$ (PhPX) $]_{2}$ ($\mathrm{X}=$ lone pair, S), a system incorporating PhP units into a heteroatom-bridged [3.3]orthocyclophane ${ }^{7}$ structure.

Reaction of PhPCl_{2} with $1,2-\left(\mathrm{NH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}(1: 1 \mathrm{~mol} / \mathrm{mol})$ and excess $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing toluene under N_{2} yields $\mathrm{Et}_{3} \mathrm{NHCl}$ precipitate, $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mu-\mathrm{PhP})(\mathrm{PhP})\right]_{2}\left(\mathbf{1} ;{ }^{31} \mathrm{P}\right.$ NMR triplets, $\delta 111.3$ and $85.4 ; 15 \%$), and uncharacterized high molecular weight oligomers/polymers (${ }^{31}$ P NMR, broad singlets, δ 95-102 and $114-120 ; 85 \%$) in solution. Passage of the mixture through a $5-\mathrm{cm}$ silica column followed by repeated crystallization from toluene yields pure $1 .{ }^{8} 1$ reacts with $\mathrm{S}_{8}(1: 4 \mathrm{ratio}, \mathrm{mol} / \mathrm{mol})$ during 24 h at $100^{\circ} \mathrm{C}$ in toluene to quantitatively form a disulfide $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mu-\mathrm{PPh})(\mathrm{PhPS})\right]_{2}$ (2). Recrystallization from toluene yields pure $2\left(60 \%\right.$ yield). ${ }^{8}$

Characterization of $\mathbf{1}$ and $\mathbf{2}$ is based on spectral (MS and ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR) data and is confirmed by a single-crystal X-ray analysis of 2. 1 exhibits a mass spectral M^{+}ion at $m / e 640$ and 2 gives a $\mathrm{M}^{+}-\mathrm{S}$ ion at $m / e 672$. The ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ consist of pairs of equal-area triplets in characteristic $\mathrm{A}_{2} \mathrm{X}_{2}$
(1) (a) Cram, D. J.; Karbach, S.; Kim, H.-E.; Knobler, C. A.; Maverick, E. F.; Ericson, J. L.; Helegeson, R. C. J. Am. Chem. Soc. 1988, 110, 2229. (b) Weber, D. E.; Vögtle, F. Top. Curr. Chem. 1981, 98, 1. (c) Cram, D. J.; Cram, J. M. Selectivity, A Goal for Synthetic Efficiency; Bartram, W., Trost, B. M., Eds.; Verlag Chemie: Weinheim, Germany, 1983; p 42. (d) Cram, D. J. CHEMTECH 1987, 120. (e) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1039. (f) Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826.
(2) (a) Grootenhuis, P. D. J.; van Eerden, J.; Dijkstra, P. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1987, 109, 8044. (b) Bott, S. G.; Coleman, A. W.; Atwood, J. L. J. Am. Chem. Soc. 1988, 110, 610. (c) Gutsche, C. D. Top. Curr. Chem. 1985, 123, 1. (d) Alder, R. W. Acc. Chem. Res. 1983, 16, 321.
(3) (a) Lehn, J.-M.; Science (Washington, D.C.) 1985, 227, 849. (b) Motekaitis, R. J.; Martell, A. E.; Leconte, J.-P.; Lehn, J.-M. Inorg. Chem. 1983, 22, 609.
(4) (a) Rampradsad, D.; Lin, W.-K.; Goldsby, K. A.; Busch, D. H. J. Am. Chem. Soc. 1988, 110, 1480. (b) Korybut-Daszkiewicz, B.; Kojima, M.; Cameron, J. H.; Herron, N.; Chavan, M. Y.; Jircitano, A. J.; Coltrain, B. K.; Neer, G. L.; Alcock, N. W.; Busch, D. H. Inorg. Chem. 1984, 23, 903. (c) Sargeson, A. M. Pure Appl. Chem. 1984, 56, 1603. (d) Comba, P.; Creaser, 1. l.; Gahan, L. R.; Harrowfield, J. MacB.; Lawrance, G. A.; Martin, L. L.; Mau, A. W. H.; Sargeson, A. N.; Sasse, W. H. F.; Snow, M. R. Inorg. Chem. 1986, 25, 384. (e) Collman, J. P.; Brauman, J. 1.; Collins, T. J.; Iverson, B.; Sessler, J. L. J. Am. Chem. Soc. 1981, 103, 2450.
(5) (a) Kyba, E. P.; John, A. M.; Brown, S. B.; Hudson, C. W.; McPhaul, M. J.; Harding, A.; Larsen, K.; Niedziecki, S.; Davis, R. E. J. Am. Chem. Soc. 1980, 102, 139. (b) Brauer, D. J.; Lebbe, T.; Stelzer, O. Angew. Chem., Int. Ed. Engl. 1988, 27, 438. (c) Kyba, E. P.; Davis, R. E.; Fox, M. A.; Clubb, C. N.; Liu, S.-T.; Reitz, G. A.; Scheuler, V. J.; Kashyap, R. P. Inorg. Chem. 1987, 26, 1747.
(6) (a) Barendt, J. M.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem. Soc. 1986, 108, 3127. (b) Wilcox, C. S.; Greer, L. M.; Lynch, V. J. Am. Chem. Soc. 1987, 109, 1865. (c) Miller, S. P.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1984, 106, 1492. (d) Murray, J. E.; Hodge, C. N. J. Am. Chem. Soc. 1984, 106, 6450 .
(7) Cyclophanes; Keehn, P. M., Rosenfeld, S. M., Eds.; Academic Press: New York, 1983; Vol. 1. Systematic nomenclature of 1: 1,3,6,9-tetraaza-2,7-diphospha-2,7-diphenyl-3,6-(phenylphosphido)-1,8-(phenylphosphido)-syn-[3.3]orthocyclophane.
(8) 1: $\mathrm{mp} 290^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 111.3$ (t, a $2,{ }^{2} J_{\mathrm{PNP}}=18.0$ $\mathrm{Hz}), 85.4(\mathrm{t}$, a 2$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.37-6.60\left(\mathrm{~m} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; \mathrm{MS}^{2}, \mathrm{M}^{+}$ $\left({ }^{12} \mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4}{ }^{+}\right), m / e 640.2:{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 103.2\left[t, \mathrm{a} 2,{ }^{2} J_{\mathrm{PNP}}\right.$ $=46.4 \mathrm{~Hz} ; \mathrm{P}(1), \mathrm{P}(3)], 61.0[\mathrm{t}, \mathrm{a} 2 ; \mathrm{P}(2), \mathrm{P}(4)] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.33-6.40$ $\left(\mathrm{m} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; \mathrm{MS}, \mathrm{M}^{+}-\mathrm{S}\left({ }^{12} \mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{~S}^{+}\right)$, $m / e 672 ; \mathrm{IR}(\mathrm{KBr}) 640$ $(\mathrm{P}=\mathrm{S}) \mathrm{cm}^{-1}$. Satisfactory elemental analyses were obtained.

Figure 1. Structure and atom-numbering system for $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mu\right.$ $\mathrm{PPh})(\mathrm{PhPS})]_{2}$ (2). Thermal ellipsoids are shown at the 50% level. Hydrogen atoms are omitted for clarity. Selected distances (\AA) and angles (deg): $\mathrm{P}(1)-\mathrm{N}(1), 1.747$ (2); $\mathrm{P}(1)-\mathrm{N}(2), 1.759$ (2); $\mathrm{P}(3)-\mathrm{N}(3)$, 1.752 (2); P(3)-P(4), 1.749 (2); $\mathrm{P}(2)-\mathrm{N}(2), 1.697$ (2); $\mathrm{P}(2)-\mathrm{P}(3), 1.706$ (2); $\mathrm{P}(4)-\mathrm{N}(1), 1.701$ (2); $\mathrm{P}(4)-\mathrm{N}(4), 1.700$ (2); $\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{P}(2), 119.3$ (1); $\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{N}(3), 109.0$ (1); $\mathrm{P}(2)-\mathrm{N}(3)-\mathrm{P}(3), 119.4$ (1); $\mathrm{N}(3)-\mathrm{P}-$ (3) $-\mathrm{N}(4), 93.0(1) ; \mathrm{P}(3)-\mathrm{N}(4)-\mathrm{P}(4), 121.4$ (1); $\mathrm{N}(1)-\mathrm{P}(4)-\mathrm{N}(4), 108.4$ (1); $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(4), 117.5$ (1); $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2), 92.3$ (1).
patterns ${ }^{9}$ consistent with that expected for a C_{2}-symmetry $\mathrm{P}_{\mathbf{4}} \mathrm{N}_{4}$ ring. Resonances for 1 ($\delta 111.3$ and 85.4) are in the region characteristic for P (III) phosphazanes. ${ }^{60.10 .11}$ In 2, one triplet occurs at markedly higher field ($\delta 61.0$) as expected for a $\mathrm{P}(\mathrm{V})$ sulfide center. ${ }^{12}{ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ are temperature independent between -80 and $100^{\circ} \mathrm{C}$, indicating that isomer equilibration or interconversion does not occur.

X-ray analysis of 2 confirms the ring structure of $\mathbf{2}^{13}$ and indirectly that of $\mathbf{1}$. 2 contains a $\mathrm{P}_{4} \mathrm{~N}_{4}$ ring of alternating P and N atoms (Figure 1) in a boat conformation. Atoms $\mathrm{P}(2)$ and $\mathrm{P}(4)$ and the four N atoms are close to coplanar; the dihedral angle between the $\mathrm{N}(1), \mathrm{N}(2), \mathrm{P}(2), \mathrm{P}(4)$ and $\mathrm{N}(3), \mathrm{N}(4), \mathrm{P}(2), \mathrm{P}(4)$ planes is 10.7°. The two $o-\mathrm{C}_{6} \mathrm{H}_{4}$ (o-phenylene) units are situated cis relative to the $\mathrm{P}_{2} \mathrm{~N}_{4}$ plane, in a [3.3] bridge heteroatom-substituted orthocyclophane system. ${ }^{7}$ The $\mathrm{P}-\mathrm{N}$ bond distances in the 1,3,2diazaphosphole rings are longer (mean $1.751 \AA$) than the others in the $\mathrm{P}_{4} \mathrm{~N}_{4}$ ring (mean $1.701 \AA$), consistent with data reported previously for N -substituted diazaphospholes. ${ }^{14.15}$ The $o-\mathrm{C}_{6} \mathrm{H}_{4}$ bridges maintain the rigidity of the $\mathrm{P}_{4} \mathrm{~N}_{4}$ ring. The $o-\mathrm{C}_{6} \mathrm{H}_{4}$ rings are nearly planar with a $\mathrm{C}(51)-\mathrm{C}(56) / \mathrm{C}(61)-\mathrm{C}(66)$ interplane dihedral angle of 36°. The $o-\mathrm{C}_{6} \mathrm{H}_{4}$ rings are $3.48 \AA$ apart at closest approach [$C(51) \ldots C(62)$ and $C(52) \ldots C(61)]$, distances not atypical for orthocyclophanes. ${ }^{7}$ The $P(2)$ and $P(4)$ electron pairs are oriented outward (exo) and the atoms $\mathrm{P}(1)$ and $\mathrm{P}(3)$ pairs are pointed inward over (endo) the $P_{4} N_{4}$ ring. $P(1)$ and $P(3)$ are 3.30 \AA apart, more than a P-P bonding distance but less than typical P...P van der Waals distances ($3.8 \AA$). ${ }^{16}$ The phenyl groups on

[^0]$P(2)$ and $P(4)$ are oriented approximately parallel and are 6.46 \AA apart at their midpoints. These rings and atoms $\mathrm{P}(1)$ and $\mathrm{P}(3)$ form a well-defined donor molecular cavity.

That $\mathbf{1}$ and $\mathbf{2}$ are obtained in only the cis isomeric form and in a boat conformation is surprising when compared to the fourfold-symmetric $(\mathrm{RNPR})_{4}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})^{10}$ and $[(n-\mathrm{Pr})$ $\left.\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NP}\right)\right]_{4}{ }^{14}$ reported earlier which each contain only one type of phosphorus environment. Also, the integrity of the $\mathrm{P}_{4} \mathrm{~N}_{4}$ ring in $\mathbf{1}$ and $\mathbf{2}$ appears to be maintained in solution and in the gas phase. No evidence for dissociation ${ }^{14}$ of 1 or 2 to monomer, e.g., $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mathrm{PhP})_{2}\right]$ or acyclic dimers, or for cis-trans isomerism is seen. After thermolysis at $100^{\circ} \mathrm{C}$ for 10 days, no conversion of $\mathbf{1}$ or $\mathbf{2}$ to higher oligomers occurs. The exceptional thermal stability and advantageous $\mathrm{P}(1)-\mathrm{P}(3)$ and $\mathrm{Ph}(2)-\mathrm{Ph}(4)$ separations in 2 and 1 make them cavity-containing molecules into which selective coordination of other atoms or metal moieties is expected. 2, with its exo phosphorus atoms oxidized, should show especially selective P(III) donor coordination. Elemental sulfur with 2 after 100 h at $100^{\circ} \mathrm{C}$ yields only traces of trisulfide $\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right.$ $\left.(\mathrm{PhPS})_{3}(\mathrm{PhP})\right] .2$ reacts with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ni}(\mathrm{CO})_{2}$ to form a $2 \cdot \mathrm{Ni}$ $(\mathrm{CO})_{2}$ complex, but not with $(\mathrm{CO})_{5} \mathrm{Mo}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ or norbornadiene $\cdot \mathrm{Mo}(\mathrm{CO})_{4}$ possibly because the $\mathrm{Mo}(\mathrm{CO})_{5}$ and $\mathrm{Mo}(\mathrm{C}$ $\mathrm{O})_{4}$ units are too large for the cavity. This coordination selectivity, the differential reactivity of phosphorus atom pairs in the structure, and the possibility that higher order cyclooligomers of type $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}(\mathrm{PhP})_{2}\right]_{n}$ (e.g., $n=3$) might form are under investigation currently.

Acknowledgment. Support of this work by National Science Foundation Grants CHE-8312856 and CHE-8714191 is gratefully acknowledged.

Supplementary Material Available: Tables of crystal data, positional and isotropic thermal parameters, bond distances and angles, and anisotropic thermal parameters for 2 (9 pages). Ordering information is given on any current masthead page.
(16) Powell, P.; Timms, P. The Chemistry of Non-Metals; Chapman and Hall: London, 1974.

Synthesis and X-ray Analysis of 1,2,4,5-Trioxazinane

Mitsuyuki Mori, ${ }^{1 a}$ Tomohito Sugiyama, ${ }^{\text {1a }}$ Masatomo Nojima,*. ${ }^{\text {1a }}$ Shigekazu Kusabayashi, ${ }^{\text {1a }}$ and Kevin J. McCullough*, ${ }^{\text {b }}$

Department of Applied Chemistry Faculty of Engineering, Osaka University Suita, Osaka 565, Japan
Department of Chemistry, Heriot-Watt University Edinburgh EH 14 4AS, Scotland

Received March 7, 1989
As a strategy for the synthesis of six-membered heterocyclic compounds, $[3+3]$ cycloadditions between two different $1,3-$ dipoles would be attractive. The few examples of this type of reaction reported to date show some potential synthetic utility. ${ }^{2}$ Although the dimerization of carbonyl oxides to give $1,2,4,5$ tetroxanes is well-known, ${ }^{3}$ we report, herein, the first example of

[^1]Table I. Synthesis of 1,2,4,5-Trioxazinane

vinyl ether	nitrone	trioxazinane (\% yield)
$\begin{array}{r} 1 \mathrm{a} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}= \\ \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{array}$	2a; $\mathrm{R}^{3}=\mathrm{R}^{5}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{H}$	3a (84)
1a	$\begin{gathered} \text { 2b; } \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}= \\ \mathrm{CH}_{2} \mathrm{Ph} \end{gathered}$	3b (71)
1a	$\begin{gathered} 2 \mathrm{c} ; \mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}, \mathrm{R}^{4}= \\ \mathrm{H}, \mathrm{R}^{5}=\mathrm{CH}_{2} \mathrm{Ph} \end{gathered}$	$3 \mathrm{c}(52)^{\text {a }}$
1a	2d; $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{Ph}$	3d (80)
1a	$\underset{\mathrm{CH}_{3}}{2 \mathrm{e} ; \mathrm{R}^{3}}=\mathrm{R}^{4}=\mathrm{Ph}, \mathrm{R}^{5}=$	3 e (91)
1b; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CH}_{3}$	2a	$3 \mathrm{f}(38)^{\text {b }}$
1b	2 b	3g (41) ${ }^{\text {b }}$
1b	2 c	3h (42) ${ }^{\text {a }}$
1b	2 d	3 i (96)
$\begin{gathered} \text { 1c; } \mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}, \\ \mathrm{R}^{2}=\mathrm{CH}_{3} \end{gathered}$	2a	$3 \mathrm{j}(86)^{\text {c }}$
1c	2 c	3k (70) ${ }^{\text {d }}$
1 c	2d	31 (90)
1c	2 e	3m (81)

${ }^{a} 3 \mathrm{k}$ was also produced in around 8% yield. ${ }^{b}$ Benzaldehyde (around 30% yield) and 3,6 -diphenyl-1,2,4,5-tetroxane (around 15% yield) were also isolated. ${ }^{d}$ The cis $/$ trans ratio $=51: 49$. ${ }^{e}$ The cis $/$ trans ratio $=$ 66:34.

Figure 1. The X-ray crystal structure of the $1,2,4,5$-trioxazinane 3 e. Some important geometrical parameters are as follows: $\mathrm{O}(1)-\mathrm{O}(2) 1.474$ (3), $\mathrm{O}(2)-\mathrm{C}(1) 1.402$ (5), $\mathrm{C}(1)-\mathrm{O}(3) 1.414$ (5), $\mathrm{O}(3)-\mathrm{N}(1) 1.453$ (4), $\mathrm{N}(1)-\mathrm{C}(2) 1.458$ (4), $\mathrm{C}(2)-\mathrm{O}(1) 1.455$ (4) $\AA ; \mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(3) 110.8$ (3), $\mathrm{O}(2)-\mathrm{O}(1)-\mathrm{C}(2) 105.7$ (2), $\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{O}(1) 105.0$ (2), $\mathrm{O}(1)-\mathrm{C}-$ (2) $-\mathrm{N}(1) 110.7$ (2), $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{O}(3) 107.9$ (2), $\mathrm{C}(1)-\mathrm{O}(3)-\mathrm{N}(1) 111.4$ $(3)^{\circ}$.
[$3+3$] cycloadditions involving carbonyl oxides and nitrones which gave rise to $1,2,4,5$-trioxazinanes, derivatives of a novel class of cyclic peroxides.

After ozonation (2 mmol of ozone) of a mixture of the appropriate vinyl ether 1 (2 mmol) and nitrone 2 (1 mmol) in methylene chloride at $0^{\circ} \mathrm{C}$, the products, including the $1,2,4,5$ trioxazinanes $3 \mathrm{a}-\mathrm{m}$, were isolated by rapid column chromatography on silica gel (Table I). Since the new products could not be fully characterized by conventional analytical and spectroscopic techniques (Supplementary Material), an X-ray crystallographic study was undertaken of adduct 3 e to establish unambiguously the structure of the new ring system. The crystal structure (Figure 1) shows that the central 1,2,4,5-trioxazinane ring system adopts a chair conformation with the N -methyl being accommodated in an axial position. The bond distances around the heterocyclic ring are generally within expected ranges.

Cycloadditions involving unsymmetrically substituted dipolar components would be expected to give rise to the trioxazinanes
(3) Bailey, P. S. Ozonation in Organic Chemistry; Academic Press: New York, 1978; Vol. 1, 1982; Vol. 2. (b) Murray, R. W.; Lin, W.-P.; Grumke, D. Advs. Chem. Ser. 1972, 112, 9. (c) Chiang, C.; Butler, W.; Kuczkowski, R. L. J. Chem. Soc., Chem. Commun. 1988, 465.

[^0]: (9) Abraham, R. J. The Analysis of High Resolution NMR Spectra; Elsevier: New York, 1971.
 (10) (a) Zeiss, W.; Schwarz, W.; Hess, H. Angew. Chem., Int. Ed. Engl. 1977, 16, 407. (b) Gallicano, K. D.; Paddock, N. L.; Rettig, S. J. Can. J. Chem. 1982, 60, 2415.
 (11) (a) Keat, R. Top. Curr. Chem. 1983, 102, 89. (b) Shaw, R. A. Phosphorus Sulfur 1978, 4, 101.
 (12) (a) Zeiss, W. Z. Naturforsch. 1980, B35, 959. (b) Crutchfield, M. M.; Dugan, C. H.; Letcher, J. H.; Mark, V.; VanWazer, J. R. Top. Phosphorus Chem. 1963, 5.
 (13) X-ray analysis of 2: $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{~S}_{2}$, fw 704.6 amu , triclinic, $P \overline{1}, a=$ 10.8724 (12) $\AA, b=11.1319$ (16) $\AA, c=14.219$ (2) $\AA, \alpha=99.812(11)^{\circ}$, $\beta=93.707(10)^{\circ}, \gamma=91.460(10)^{\circ}, V=1691.1(4) \AA^{3}, Z=2, d_{\text {calc }}=1.384$ $\mathrm{g} \mathrm{cm}^{-3}$; Nicolet P3/F autodiffractometer, $25^{\circ} \mathrm{C}$, Mo $\mathrm{K} \alpha(\lambda=0.71069 \AA$); Wycoff ω scan, $3.0<2 \theta<45.0,3192$ observed reflections $\left[F_{0}>6 \sigma\left(F_{0}\right)\right.$]; solved with shelxtl-Plus; $R=0.031, R_{w}=0.042$. Positional and thermal parameters are available as Supplementary Material.
 (14) (a) Malavaud, C.; N'Gando M'Pondo, T.; Lopez, L.; Barrans, J.; Legros, J.-P. Can. J. Chem. 1984, 62, 44. (b) Zeiss, W.; Henjes, H. Chem. Ber. 1978, 111, 1655.
 (15) Malavaud, C.: Boisdon, M. T.; Charbonnel, Y.; Barrans, J. Tetrahedron Lett. 1979, 20, 447.

[^1]: (1) (a) Osaka University. (b) Heriot-Watt University. All the correspondence for the X-ray analysis should be addressed to K.J.M.
 (2) (a) Moody, C. J. Comprehensive Heterocyclic Chemistries; Katrizky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 3. (b) Crabb, J. N.; Storr, R. C. 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 2. (c) Heine, H. W.; Heitz, L. J. Org. Chem. 1974, 39, 3192. (d) Kliegel, W. Chem.-Ztg. 1976, 100, 236. (e) Schultz, A. G.; Macielag, M.; Plummer, M. J. Org. Chem. 1988, 53, 391 and references therein.

